
An Innovative Approach to Achieve Compositionality Efficiently using
Multi-Version Object Based Transactional Systems

{ C. Juyal, S. Kumari, S. Peri, A. Singh and A. Somani} CSE Dept, IIT Hyderabad, India {S. Kulkarni} CSE Dept, MSU, USA

INTRODUCTION
• Software Transaction Memory Systems(STMs) are a convenient programming interface for a pro-

grammer to access shared memory using concurrent threads without worrying about concurrency
issues.

• STMs export the following methods: t_begin, t_read, t_write, tryC, tryA.

• Object-based STMs(OSTMs) operate on higher level objects rather than primitive read & writes
operations which act upon memory locations.

• OSTMs exports t_begin, t_insert, t_delete, t_lookup and tryC methods for Set.

d) at Layer−1

OSTM

RWSTMs

r−w

w−r

c) at Layer−0

a) Underlying hash table b) H1: Transactional tree history

c2

r1(k2)
w2(k5) r1(k2) r1(k7)

Layer-0: Reads & Writes

Layer-1: Lookups &

T2

k5 k7 T1 T2

T2T1

T1

r2(k5)

Deletes

k2

r2(k2)
w2(k2)

lu1(k7)lu1(k2) del2(k5)

2

1

3

m

Figure 1: Motivational example of OSTMs Vs RWSTMs

MOTIVATION
• Multi-version OSTM (MVOSTM) reduces the number of aborts and provides greater concurrency.

d) MVOSTM

b) Multi−version OSTMa) Single−version OSTMs (SV−OSTMs) c) SV−OSTMs

lu1(ht, k1, v0)

C2

C1

ins2(ht, k2, v2)

lu1(ht, k2, NULL)

C2del2(ht, k1, v3)

A1

T1

T2

T1

T2

lu1(ht, k2, NULL)lu1(ht, k1, ABORT ) T1
T2

T1 T2

lu-ins

del-lu

lu-ins
ins2(ht, k2, v2) del2(ht, k1, v0)

Figure 2: Advantages of multi-version over single-version OSTM

PROPOSED PROTOCOL: HT-MVOSTM
• The effect of whole transaction Ti will be atomic in that sense it ensure compositionality.

Ti

Ci

Validate at instant.
STM_lookup() :

STM_begin() : STM_insert() :
Execute w/o touching
shared memory.

STM_tryC() :
Validation
* Interference validation
* Time order validation

STM_Delete() :

Modify at commit.
Update txlog.

* Init txlog.

Validate at instant.
Update txlog.

Update txlog.

Commit into underlying data-structure.

Prepare a transaction

* Intra Trans Validation

* Unique_id.

Return value method execution phase Update method execution phase

Figure 3: MV-OSTM transaction lifecycle

HT-MVOSTM DESIGN
• We have proposed the new CDS as lazyrb-list to reduce the traversal time.

• Each key k maintains multiple versions to reduce the number of aborts.

m

2

1

k9

−∞

k5 k8

k12 +∞

Figure 4: HT-MVOSTM with Lazyrb-list

VL(Version List)

0 v0 rvl1T

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23 35

rvl3

rvl(return value list)

k12

Figure 5: Maintaining Multiple Versions

EXPERIMENTAL EVALUATION
• We have compare our proposed list-MVOSTM with state-of-the-arts STMs (NOrec-list, Boosting-

list, Trans-list, list-OSTM).

• LI and UI workloads are (lu-90%, ins-8%, del-2%) & (lu-10%, ins-45%, del-45%), respectively.

• list-MVOSTM outperform 15 to 20 times speedup and negligible aborts as compare to other STMs.

CONCLUSION & FUTURE WORK
• We have proposed a new STM as MVOSTM which provides greater concurrency with the help of

multiple versions to reduce the number of aborts and it’s composable too.

• MVOSTM ensures mv-permissiveness which never aborts a return-value only transaction.

• MVOSTM satisfies opacity.

• It can be extended for other CDS as well.

CONTACT INFORMATION
Web: http : //www.iith.ac.in/ sathya_p/
Email: (sathya_p, cs15resch01001)@iith.ac.in
Phone: (040) 2301 8446


