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INTRODUCTION
• Software Transaction Memory Systems(STMs) are a convenient programming interface for a pro-

grammer to access shared memory using concurrent threads without worrying about concurrency
issues.

• STMs export the following methods: t_begin, t_read, t_write, tryC, tryA.

• Object-based STMs(OSTMs) operate on higher level objects rather than primitive read & writes
operations which act upon memory locations.

• OSTMs exports t_begin, t_insert, t_delete, t_lookup and tryC methods for Set.
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Figure 1: Motivational example of OSTMs Vs RWSTMs

MOTIVATION
• Multi-version OSTM (MVOSTM) reduces the number of aborts and provides greater concurrency.

d) MVOSTM

b) Multi−version OSTMa) Single−version OSTMs (SV−OSTMs) c) SV−OSTMs

lu1(ht, k1, v0)

C2

C1

ins2(ht, k2, v2)

lu1(ht, k2, NULL)

C2del2(ht, k1, v3)

A1

T1

T2

T1

T2

lu1(ht, k2, NULL)lu1(ht, k1, ABORT ) T1
T2

T1 T2

lu-ins

del-lu

lu-ins
ins2(ht, k2, v2) del2(ht, k1, v0)

Figure 2: Advantages of multi-version over single-version OSTM

PROPOSED PROTOCOL: HT-MVOSTM
• The effect of whole transaction Ti will be atomic in that sense it ensure compositionality.
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Figure 3: MV-OSTM transaction lifecycle

HT-MVOSTM DESIGN
• We have proposed the new CDS as lazyrb-list to reduce the traversal time.

• Each key k maintains multiple versions to reduce the number of aborts.
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Figure 4: HT-MVOSTM with Lazyrb-list
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Figure 5: Maintaining Multiple Versions

EXPERIMENTAL EVALUATION
• We have compare our proposed list-MVOSTM with state-of-the-arts STMs (NOrec-list, Boosting-

list, Trans-list, list-OSTM).

• LI and UI workloads are (lu-90%, ins-8%, del-2%) & (lu-10%, ins-45%, del-45%), respectively.

• list-MVOSTM outperform 15 to 20 times speedup and negligible aborts as compare to other STMs.

CONCLUSION & FUTURE WORK
• We have proposed a new STM as MVOSTM which provides greater concurrency with the help of

multiple versions to reduce the number of aborts and it’s composable too.

• MVOSTM ensures mv-permissiveness which never aborts a return-value only transaction.

• MVOSTM satisfies opacity.

• It can be extended for other CDS as well.
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